Exercise 2.5.1

(Reaching a fixed point in a finite time) A particle travels on the half-line $x \geq 0$ with a velocity given by $\dot{x}=-x^{c}$, where c is real and constant.
a) Find all values of c such that the origin $x=0$ is a stable fixed point.
b) Now assume that c is chosen such that $x=0$ is stable. Can the particle ever reach the origin in a finite time? Specifically, how long does it take for the particle to travel from $x=1$ to $x=0$, as a function of c ?

Solution

Part (a)
Let

$$
\dot{x}=-x^{c}=f(x) .
$$

If $x=0$ is a fixed point, then

$$
f(0)=0,
$$

which means c cannot be negative or zero: $c>0$. According to linear stability analysis, in order for $x=0$ to be a stable fixed point in particular, it's necessary that

$$
f^{\prime}(0)<0 .
$$

Differentiate $f(x)$ using the power rule.

$$
f^{\prime}(x)=-c x^{c-1}
$$

If $0<c<1$, then

$$
f^{\prime}(0)=\lim _{x \rightarrow 0^{+}} \frac{-c}{x^{1-c}}=-\infty
$$

If $c=1$, then

$$
f^{\prime}(0)=-1
$$

If $c>1$, then

$$
f^{\prime}(0)=\lim _{x \rightarrow 0^{+}}\left(-c x^{c-1}\right)=0 .
$$

Therefore, the values of c for which $f^{\prime}(0)<0$ is satisfied are $0<c \leq 1$.

Part (b)

Solve the ODE by separating variables.

$$
\begin{gathered}
\dot{x}=-x^{c} \\
\frac{d x}{d t}=-x^{c} \\
x^{-c} d x=-d t
\end{gathered}
$$

Integrate both sides.

$$
\begin{align*}
\int x^{-c} d x & =\int-d t \\
\frac{1}{1-c} x^{1-c} & =-t+D \tag{1}
\end{align*}
$$

To determine D, suppose that the particle is at $x=x_{0}$ when $t=0: x(0)=x_{0}$.

$$
\frac{1}{1-c} x_{0}^{1-c}=D
$$

Consequently, equation (1) becomes

$$
\frac{1}{1-c} x^{1-c}=-t+\frac{1}{1-c} x_{0}^{1-c} .
$$

Solve for t.

$$
t=\frac{1}{1-c}\left(x_{0}^{1-c}-x^{1-c}\right) .
$$

To find how long it takes the particle to reach the origin, set $x=0$.

$$
t=\frac{x_{0}^{1-c}}{1-c}
$$

Provided that $0<c<1$, the particle reaches the origin in a finite time. If $x_{0}=1$, then

$$
t=\frac{1}{1-c} .
$$

